Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Mycol ; 60(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35867978

RESUMO

Fungal infections have increased in the last years, particularly associated to an increment in the number of immunocompromised individuals and the emergence of known or new resistant species, despite the difficulties in the often time-consuming diagnosis. The controversial efficacy of the currently available strategies for their clinical management, apart from their high toxicity and severe side effects, has renewed the interest in the research and development of new broad antifungal alternatives. These encompass vaccines and passive immunization strategies with monoclonal antibodies (mAbs), recognizing ubiquitous fungal targets, such as fungal cell wall ß-1,3-glucan polysaccharides, which could be used in early therapeutic intervention without the need for the diagnosis at species level. As additional alternatives, based on the Dectin-1 great affinity to ß-1,3-glucan, our group developed broad antibody-like Dectin1-Fc(IgG)(s) from distinct subclasses (IgG2a and IgG2b) and compared their antifungal in vitro and passive immunizations in vivo performances. Dectin1-Fc(IgG2a) and Dectin1-Fc(IgG2b) demonstrated high affinity to laminarin and the fungal cell wall by ELISA, flow cytometry, and microscopy. Both Dectin-1-Fc(IgG)(s) inhibited Histoplasma capsulatum and Cryptococcus neoformans growth in a dose-dependent fashion. For Candida albicans, such inhibitory effect was observed with concentrations as low as 0.098 and 0.049 µg/ml, respectively, which correlated with the impairment of the kinetics and lengths of germ tubes in comparison to controls. Previous opsonization with Dectin-1-Fc(IgG)(s) enhanced considerably the macrophage antifungal effector functions, increasing the fungi macrophages interactions and significantly reducing the intraphagosome fungal survival, as lower CFUs were observed. The administration of both Dectin1-Fc(IgG)(s) reduced the fungal burden and mortality in murine histoplasmosis and candidiasis models, in accordance with previous evaluations in aspergillosis model. These results altogether strongly suggested that therapeutic interventions with Dectin-1-Fc(IgG)(s) fusion proteins could directly impact the innate immunity and disease outcome in favor of the host, by direct neutralization, opsonization, phagocytosis, and fungal elimination, providing interesting information on the potential of these new strategies for the control of invasive fungal infections. LAY SUMMARY: Mycoses have increased worldwide, and new efficient therapeutics are needed. Passive immunizations targeting universally the fungal cell would allow early interventions without the species-level diagnosis. Lectins with affinity to carbohydrates could be used to engineer 'antibody-like' strategies.


Assuntos
Infecções Fúngicas Invasivas , Micoses , Animais , Antifúngicos/farmacologia , Modelos Animais de Doenças , Imunoglobulina G , Infecções Fúngicas Invasivas/veterinária , Lectinas Tipo C/metabolismo , Camundongos
2.
Front Cell Infect Microbiol ; 12: 858979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711659

RESUMO

Acanthamoeba castellanii (Ac) is a species of free-living amoebae (FLAs) that has been widely applied as a model for the study of host-parasite interactions and characterization of environmental symbionts. The sharing of niches between Ac and potential pathogens, such as fungi, favors associations between these organisms. Through predatory behavior, Ac enhances fungal survival, dissemination, and virulence in their intracellular milieu, training these pathogens and granting subsequent success in events of infections to more evolved hosts. In recent studies, our group characterized the amoeboid mannose binding proteins (MBPs) as one of the main fungal recognition pathways. Similarly, mannose-binding lectins play a key role in activating antifungal responses by immune cells. Even in the face of similarities, the distinct impacts and degrees of affinity of fungal recognition for mannose receptors in amoeboid and animal hosts are poorly understood. In this work, we have identified high-affinity ligands for mannosylated fungal cell wall residues expressed on the surface of amoebas and macrophages and determined the relative importance of these pathways in the antifungal responses comparing both phagocytic models. Mannose-purified surface proteins (MPPs) from both phagocytes showed binding to isolated mannose/mannans and mannosylated fungal cell wall targets. Although macrophage MPPs had more intense binding when compared to the amoeba receptors, the inhibition of this pathway affects fungal internalization and survival in both phagocytes. Mass spectrometry identified several MPPs in both models, and in silico alignment showed highly conserved regions between spotted amoeboid receptors (MBP and MBP1) and immune receptors (Mrc1 and Mrc2) and potential molecular mimicry, pointing to a possible convergent evolution of pathogen recognition mechanisms.


Assuntos
Acanthamoeba castellanii , Amoeba , Acanthamoeba castellanii/microbiologia , Amoeba/microbiologia , Animais , Antifúngicos , Parede Celular/metabolismo , Macrófagos/metabolismo , Manose/química , Camundongos , Trofozoítos/metabolismo
3.
J Fungi (Basel) ; 6(4)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120893

RESUMO

Aspergillosis cases by Aspergillus fumigatus have increased, along with fungal resistance to antifungals, urging the development of new therapies. Passive immunization targeting common fungal antigens, such as chitin and ß-glucans, are promising and would eliminate the need of species-level diagnosis, thereby expediting the therapeutic intervention. However, these polysaccharides are poorly immunogenic. To overcome this drawback, we developed the lectin-Fc(IgG) fusion proteins, Dectin1-Fc(IgG2a), Dectin1-Fc(IgG2b) and wheat germ agglutinin (WGA)-Fc(IgG2a), based on their affinity to ß-1,3-glucan and chitooligomers, respectively. The WGA-Fc(IgG2a) previously demonstrated antifungal activity against Histoplasma capsulatum, Cryptococcus neoformans and Candida albicans. In the present work, we evaluated the antifungal properties of these lectin-Fc(s) against A. fumigatus. Lectin-Fc(IgG)(s) bound in a dose-dependent manner to germinating conidia and this binding increased upon conidia germination. Both lectin-Fc(IgG)(s) displayed in vitro antifungal effects, such as inhibition of conidia germination, a reduced length of germ tubes and a diminished biofilm formation. Lectin-Fc(IgG)(s) also enhanced complement deposition on conidia and macrophage effector functions, such as increased phagocytosis and killing of fungi. Finally, administration of the Dectin-1-Fc(IgG2b) and WGA-Fc(IgG2a) protected mice infected with A. fumigatus, with a 20% survival and a doubled life-span of the infected mice, which was correlated to a fungal burden reduction in lungs and brains of treated animals. These results confirm the potential of lectin-Fc(IgGs)(s) as a broad-spectrum antifungal therapeutic.

4.
Front Cell Infect Microbiol ; 10: 565571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585262

RESUMO

The cell wall is a ubiquitous structure in the fungal kingdom, with some features varying depending on the species. Additional external structures can be present, such as the capsule of Cryptococcus neoformans (Cn), its major virulence factor, mainly composed of glucuronoxylomannan (GXM), with anti-phagocytic and anti-inflammatory properties. The literature shows that other cryptococcal species and even more evolutionarily distant species, such as the Trichosporon asahii, T. mucoides, and Paracoccidioides brasiliensis can produce GXM-like polysaccharides displaying serological reactivity to GXM-specific monoclonal antibodies (mAbs), and these complex polysaccharides have similar composition and anti-phagocytic properties to cryptococcal GXM. Previously, we demonstrated that the fungus Histoplasma capsulatum (Hc) incorporates, surface/secreted GXM of Cn and the surface accumulation of the polysaccharide enhances Hc virulence in vitro and in vivo. In this work, we characterized the ability of Hc to produce cellular-attached (C-gly-Hc) and secreted (E-gly) glycans with reactivity to GXM mAbs. These C-gly-Hc are readily incorporated on the surface of acapsular Cn cap59; however, in contrast to Cn GXM, C-gly-Hc had no xylose and glucuronic acid in its composition. Mapping of recognized Cn GXM synthesis/export proteins confirmed the presence of orthologs in the Hc database. Evaluation of C-gly and E-gly of Hc from strains of distinct monophyletic clades showed serological reactivity to GXM mAbs, despite slight differences in their molecular dimensions. These C-gly-Hc and E-gly-Hc also reacted with sera of cryptococcosis patients. In turn, sera from histoplasmosis patients recognized Cn glycans, suggesting immunogenicity and the presence of cross-reacting antibodies. Additionally, C-gly-Hc and E-gly-Hc coated Cn cap59 were more resistant to phagocytosis and macrophage killing. C-gly-Hc and E-gly-Hc coated Cn cap59 were also able to kill larvae of Galleria mellonella. These GXM-like Hc glycans, as well as those produced by other pathogenic fungi, may also be important during host-pathogen interactions, and factors associated with their regulation are potentially important targets for the management of histoplasmosis.


Assuntos
Criptococose , Cryptococcus neoformans , Basidiomycota , Genótipo , Histoplasma , Humanos , Polissacarídeos
5.
Cell Microbiol ; 21(10): e13066, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173452

RESUMO

Free-living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose-binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose-binding proteins, Ac-fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.


Assuntos
Acanthamoeba castellanii/metabolismo , Fungos/patogenicidade , Lectina de Ligação a Manose/metabolismo , Acanthamoeba castellanii/química , Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/ultraestrutura , Animais , Candida albicans/patogenicidade , Candida albicans/ultraestrutura , Concanavalina A/metabolismo , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/ultraestrutura , Histoplasma/patogenicidade , Histoplasma/ultraestrutura , Interações Hospedeiro-Patógeno , Larva/microbiologia , Lepidópteros/microbiologia , Manose/química , Manose/metabolismo , Lectina de Ligação a Manose/química , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Paracoccidioides/patogenicidade , Paracoccidioides/ultraestrutura , Saccharomyces cerevisiae/patogenicidade , Saccharomyces cerevisiae/ultraestrutura , Fatores de Tempo , Imagem com Lapso de Tempo , Virulência , Fatores de Virulência/metabolismo
6.
Sci Rep ; 9(1): 2630, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796291

RESUMO

Peritrophins are associated with structural and functional integrity of peritrophic membranes (PM), structures composed of chitin and proteins. PM lines the insect midgut and has roles in digestion and protection from toxins. We report the full-length cDNA cloning, molecular characterization and functional analysis of SfPER, a novel PM peritrophin A protein, in Spodoptera frugiperda. The predicted amino acid sequence indicated SfPER's domain structure as a CMCMC-type, consisting of a signal peptide and three chitin-binding (C) domains with two intervening mucin-like (M) domains. Phylogenetic analysis determined a close relationship between SfPER and another S. frugiperda PM peritrophin partial sequence. SfPER transcripts were found in larvae and adults but were absent from eggs and pupae. Chitin affinity studies with a recombinant SfPER-C1 peritrophin A-type domain fused to SUMO/His-tag confirmed that SfPER binds to chitin. Western blots of S. frugiperda larval proteins detected different sized variants of SfPER along the PM, with larger variants found towards the posterior PM. In vivo suppression of SfPER expression did not affect susceptibility of larvae to Bacillus thuringiensis toxin, but significantly decreased pupal weight and adult emergence, possibly due to PM structural alterations impairing digestion. Our results suggest SfPER could be a novel target for insect control.


Assuntos
Proteínas de Insetos/metabolismo , Spodoptera/crescimento & desenvolvimento , Spodoptera/metabolismo , Animais , Membrana Celular/metabolismo , Quitina/metabolismo , Comportamento Alimentar , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Filogenia , Ligação Proteica , Domínios Proteicos , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Spodoptera/genética
7.
Insect Sci ; 26(3): 479-498, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28872766

RESUMO

Multitoxin Bt-crops expressing insecticidal toxins with different modes of action, for example, Cry and Vip, are expected to improve resistance management in target pests. While Cry1A resistance has been relatively well characterized in some insect species, this is not the case for Vip3A, for which no mechanism of resistance has yet been identified. Here we applied HT-SuperSAGE to analyze the transcriptome of the gut tissue of tobacco budworm Heliothis virescens (F.) laboratory-selected for Vip3Aa resistance. From a total of 1 324 252 sequence reads, 5 895 126-bp tags were obtained representing 17 751 nonsingleton unique transcripts (UniTags) from genetically similar Vip3Aa-resistant (Vip-Sel) and susceptible control (Vip-Unsel) strains. Differential expression was significant (≥2.5 fold or ≤0.4; P < 0.05) for 1989 sequences (11.2% of total UniTags), where 420 represented overexpressed (OE) and 1569 underexpressed (UE) genes in Vip-Sel. BLASTN searches mapped 419 UniTags to H. virescens sequence contigs, of which, 416 (106 OE and 310 UE) were unambiguously annotated to proteins in NCBI nonredundant protein databases. Gene Ontology distributed 345 of annotated UniTags in 14 functional categories with metabolism (including serine-type hydrolases) and translation/ribosome biogenesis being the most prevalent. A UniTag homologous to a particular member of the REsponse to PAThogen (REPAT) family was found among most overexpressed, while UniTags related to the putative Vip3Aa-binding ribosomal protein S2 (RpS2) were underexpressed. qRT-PCR of a subset of UniTags validated the HT-SuperSAGE data. This study is the first providing lepidopteran gut transcriptome associated with Vip3Aa resistance and a foundation for future attempts to elucidate the resistance mechanism.


Assuntos
Proteínas de Bactérias , Mariposas/metabolismo , Transcriptoma , Animais , Biblioteca Gênica , Resistência a Inseticidas/genética , Larva/metabolismo , Mariposas/genética , Proteínas Ribossômicas/metabolismo , Serina Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...